Synthesis of carbon supported ordered tetragonal pseudo-ternary Pt$_2$M'M" (M = Fe, Co, Ni) nanoparticles and their activity for oxygen reduction reaction

Minh T. Nguyen, Ryo H. Wakabayashi, Minghui Yang, Héctor D. Abreuña, Francis J. DiSalvo*

Department of Chemistry, Cornell University, Ithaca, NY 14853-1301, USA

HIGHLIGHTS

- Three ternary ordered intermetallic nanoparticles were synthesized using a novel synthetic method.
- Activity towards oxygen reduction and stability of the catalysts were tested in acidic conditions.
- The catalysts showed comparable to slightly improved activity compared to commercial Pt/C.

ABSTRACT

Alloying Pt with 3d transition metals has attracted much attention due to their reduced Pt content and reports of enhanced electrocatalytic activity for proton exchange membrane fuel cell applications. However, synthesizing ordered nanocrystalline intermetallics in the sub-10 nm range can be challenging. Here, we report on the co-reduction synthesis of ordered ternary Pt-base transition metal intermetallics with particle sizes in the regime of 3–5 nm. Since differences in the activity of PtM (M = Fe, Co, Ni) for oxygen reduction reaction (ORR) have been reported, we explored their combinations: Pt$_2$FeCo, Pt$_2$FeNi, and Pt$_2$CoNi. These ternary intermetallic nanoparticles crystallized in P4/mmm space group upon annealing in a protective KCl matrix. The electrocatalysts were prepared by dispersing these intermetallics onto a carbon support using ethylene glycol and various sonication techniques. A combination of analytical techniques including powder X-ray diffraction, thermogravimetric analysis, electron microscopy and electrochemical methods have been used in this study. The oxygen reduction reaction activity and stability of the catalysts were tested in 0.1 M HClO$_4$ and 0.1 M H$_2$SO$_4$ using cyclic voltammetry and rotating disk electrode voltammetry. The correlations between the composition, structure, morphology and activity of the intermetallics have been established and are discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Of the different classes of fuel cells, PEMFCs using hydrogen fuel are presently considered the best candidates for automotive applications due to their low operating temperatures, short warm-up time, and acceptable power density. [1–3] In order for commercial implementation of PEMFCs for mobile and transportation applications, the technology needs to be more durable and affordable. [4,5] A major contributor to the high cost is the sluggish kinetics of the oxygen reduction reaction (ORR), which leads to high Pt loadings to reach reasonable power densities. Alloying has been a promising approach to producing advanced catalytic materials. [6–9] It has been shown that alloying Pt with one or more 3d transition metals can not only reduce the Pt content, but also can effectively enhance ORR activity by factor of 2–4 or so by shifting the half-wave potential to more positive potentials by about 30 mV [10–14].

Intermetallics are traditionally synthesized using high temperature reactions and lengthy annealing times. Some common synthetic techniques include arc melting and powder metallurgy, where the reactants are heated to relatively high temperatures (typically above 1000 °C) followed by days or weeks of annealing. [15] Formation of intermetallic phases requires homogenous
mixing of reactants as small particles (typically 1–100 nm) and high temperatures to overcome the slow solid–solid diffusion rates in the solid state. The lengthy annealing times are necessary for reactants to become homogeneous, nucleating and growing the long-range ordered intermetallic structure throughout the material. The high temperature reactions that are required for traditional solid-state synthesis, while important for generating many useful materials, offer little control over morphology and particle size. [16] Thus, synthesizing ordered intermetallic nano-particles (NPs) in the sub 10 nm range can be challenging.

Some methods have been developed to form intermetallic nanocrystals in the 5–10 nm size range. [17–21] For example, Aslam and co-workers have shown that ordered face-centered tetragonal (fct) PtFe nanocrystals in the 4–6 nm size range can be synthesized by encapsulating alloy PtFe NPs in a SiO2 shell, which prevents the particles from agglomerating during the annealing at temperatures up to 1000 °C. [22] However, the ordered particles are often kept inside the silica shells, and removal of the silica shells causes the particles to agglomerate. If surface stabilizing surfactants are used during the synthesis, thin carbon layers that are not easily removed, often form during annealing. Sun and co-workers have also shown size controlled PtFe NPs employing a similar method, using MgO to encapsulate the particles and prevent rapid particle growth. [23] MgO is removed with a dilute HCl wash, with only minor Fe metal leaching. However, significant particle agglomeration was observed. Surfactants such as hexadecanethiol and oleic acid are able to stabilize the particles for several hours; however, complete removal of the carbon groups was unable to be achieved. [24] In order to explore the properties of intermetallic nanomaterials as PEMFC catalysts, it is imperative to use a generalizable method of synthesizing well-dispersed, intermetallic nanocrystals with tunable size and composition without the use of strongly coordinating surfactants.

In this paper, we report the synthesis of ordered tetragonal Pt2FeCo, Pt2FeNi, and Pt2CoNi NPs. The co-reduction method (Scheme 1) applied in this study allows the size of the ordered Pt intermetallics to be maintained at 3–5 nm. The ORR activities of these intermetallics on carbon supports were compared to a 50 wt% Pt/C Pt/C-TEK standard.

2. Experimental methods

2.1. Materials

PtCl4 (99.9%, anhydrous), NiCl2 (99.9%, ultra-dry), CoCl2 (99.9% ultra-dry), and LiCl (99.9%, anhydrous) were purchased from Alfa Aesar. FeCl3 (98%, anhydrous), potassium triethylborohydride (1.0 M in THF), and ethylene glycol were purchased from Sigma–Aldrich. Li6NiCl8 was synthesized by mixing stoichiometric amounts of NiCl2 and LiCl using a mortar and pestle. The yellow powder was then transferred and sealed in a quartz tube under vacuum and annealed at 540 °C for 672 h, followed by rapid quench to room temperature. Li2CoCl4 was prepared in a similar manner, but annealed at 400 °C for 162 h, then cooled to room temperature naturally. THF and hexanes were dispensed from a custom built Seca solvent system by Glass Contour. All reductions were preformed air-free inside an argon atmosphere glove-box.

2.2. Synthesis of intermetallic NPs

Pt2FeCo–25KCl: The solvent co-reduction method has been used for the NP synthesis as illustrated in Scheme 1. Briefly, 100 mg of PtCl4 (0.3 mmol), 32 mg of Li2CoCl4 (0.15 mmol), 24 mg FeCl3 (0.15 mmol), and 63 mg LiCl (1.5 mmol) were added to a 100 mL three necked round bottom flask and dissolved in 25 mL of dry THF. The solution was then rapidly reduced, via syringe, with 8.5 mL KEt3BH to account for all the chloride ions in solution with 15 mol% excess. The black solution was then transferred to a 50 mL centrifuge tube, capped with a septum and fastened with copper wire. The solution was spun at 7000 rpm for 5 min and the clear supernatant was removed under a positive pressure of argon and cannula needle. The black precipitate was then washed three times with 30 mL aliquots of dry THF with a final wash with 30 mL of dry hexanes using the above procedure. The black precipitate was then dried under vacuum via schlenk-line. The dried black powder (NPs encased in KCl, NP/KCl) was exposed to air slowly by backfilling the centrifuge tube with Ar, punctured with a needle, and allowed to sit overnight. Similar to the synthesis of Pt2FeCo–25KCl NPs, Pt2FeNi–25KCl and Pt2CoNi–25KCl were synthesized by co-reduction of mixture of PtCl4, Li6NiCl8, LiCl and FeCl3 or Li2CoCl4, respectively. In order to form ordered intermetallic phases, the NPs/KCl were transferred to a silica tube and sealed under vacuum. The samples were annealed at 100 °C for 672 h, then cooled to room temperature naturally. THF and hexanes were dispensed from a custom built Seca solvent system by Glass Contour. All reductions were preformed air-free inside an argon atmosphere glove-box.

![Scheme 1. Co-reduction synthesis of Pt2CoNi/C catalyst.](image-url)
were then annealed at 550 °C for 4 h, cooled to 450 °C over 3 h, then held at 450 °C for 15 h, finally cooled to room temperature over 5 h.

2.3. Characterization

The purities of NPs were examined with a Rigaku Ultima VI powder diffractometer (PXRD) with CuKα radiation (K_{\alpha1}, \lambda = 1.5406 Å and K_{\alpha2}, \lambda = 1.5444 Å). Crystal structures of the NPs were confirmed by PXRD profiles using the GSAS package. [25] The crystalline domain sizes of the NPs can be estimated from a Rietveld fit of the Lorentzian function, as discussed previously. [26] SEM and EDX were performed with a LEO-1550 field emission SEM (FSEM). TEM was performed with a FEI T12 Spirit TEM STEM. The mass percent of NPs on carbon black support was determined using TGA. The samples were heated to 550 °C to completely oxidize off the carbon support material. Complete oxidation of the non-Pt transition metals is assumed (formation of Fe2O3, Co3O4, and NiO) and the percent mass difference is subtracted from the experimental value.

2.4. Electrochemical measurements

Transfer of NPs to carbon black (C-Blk) support: 15 mg of C-Blk (Vulcan XC72R, untreated) and 5 mL of ethylene glycol (EG) in a 20 mL scintillation vial, was sonicated (Branson 3510) for 1 h. 26 mg of NPs/KCl with 1.5 mL of EG were ultrasonicated (Microson Ultra-Cell Disruptor XL) for 30 s in a 5 mL vial submerged in an ice bath. The NP/KCl/EG solution was then added to C-Blk/EG solution and ultrasonicated for an additional 10 min while submerged in an ice bath. The final solution was centrifuged at 3500 rpm for 20 min. The supernatant was removed and the black precipitate was washed 5 times with 10 mL aliquots of Millipore water. After the final wash, the black precipitate was dried at 125 °C in air for 90 min.

The general procedure for evaluating the electrocatalytic activity of a catalyst involves the casting of a catalyst thin-film of known loading on the surface of a glassy carbon electrode. Glassy carbon electrodes (d = 5 mm) were polished using diamond polishing paste (Buehler) followed by 0.3, and 0.05 μm alumina powder (Extect and Buehler, respectively), rinsed using Millipore water (18 MΩ/cm Millipore Milli-Q) and was sonicated in 1 M NaOH (Maeron, ACS grade) for 5 min to activate the surface. No electrochemical cleaning of the glassy carbon electrodes were performed. Approximately 7 mg of NP/C and 2 mL of 0.02% Nafion solution in ethanol (200 proof, KOPTEC) (so as to make the Pt loading 20 μg/cm²) was ultrasonicated for several minutes (Microson Ultrasonic Cell Disruptor XL), and 5 μm aliquot was deposited on the electrode. For the Pt2FeCo/C, Pt2FeNi/C, and Pt2CoNi/C catalysts (which are highly hydrophobic), a stock solution of 0.02% Nafion in ethanol was prepared by mixing 0.4 mL of 5 wt% Nafion ionomer solution (Sigma–Aldrich) and 99.6 mL of ethanol in a 100 mL volumetric flask. 2 mL of the stock solution was added to the appropriate amount of NPs/C sample to yield 20 μg/cm² loading on the electrode. A 5 μL solution of the ink was drop-cast onto a 5 mm diameter electrode.

Once the thin-film dried, the electrochemical activity was evaluated in a standard three-electrode electrochemical cell with working, counter, and reference electrodes to obtain CVs in a deoxygenated electrolyte using high-purity nitrogen gas (Airgas) and ORR polarization curves in an O2-saturated (UHP, Airgas) electrolyte. The electrochemical measurements were done in 0.1 M H2SO4 and HClO4 (Alfa Aesar 99.999%), Pt and Pt-based electrode catalysts exhibit significantly lower ORR activity in 0.05 M H2SO4 compared to HClO4 as the electrolyte. [27,28] This is due to Pt surfaces being highly susceptible to the adsorption of HSO4 and SO4²⁻ ions. For 20 wt% Pt/CETEK standards, mass and specific activities in 0.1 M HClO4 (at 0.9 V scanned at 20 mV/s with a Pt loading of 20 μgPt/cm²) were 0.21 A/mgPt and 347 μA/cm²Pt, respectively, whereas the same electrode under the same conditions in 0.05 M H2SO4 electrolyte showed mass and specific activities of 0.07 A/mgPt and 105 μA/cm²Pt respectively. [29] Despite the lower activities in sulfuralic acid electrolytes, we have chosen to carry out the experiments in 0.1 M H2SO4 as well. To compare “apples to apples,” the results of our catalysts are compared against a Pt/EETEK C-Blk standard under the same conditions.

Cyclic voltammograms (CV) of the catalyst materials were recorded at room temperature between 0.05 and 1.10 V vs. reversible hydrogen electrode (RHE) at a scan rate of 20 mV/s⁻¹ using a Bioanalytical Systems CV-27 potentiostat after degassing the electrolyte with N2 for 20 min prior to the experiment. The ORR activity of the deposited nanomaterials were studied at room conditions.
The open circle and solid marks represent the bulk and nano phases, respectively. The unit cell data of Pt is given. Since the a lattice parameters obtained for Pt2FeCo showed significant deviation from the bulk measurements, we determined the lattice parameters again on a different portion of the sample, obtaining a result that differed by 0.012 Å. The "α" lattice parameter for Pt2FeCo used in this table and Figs. 3 and 4 is the average of two measurements. Both goodness of fit parameters from two measurements are shown.

![Image](Image 66x374 to 250x514)

Fig. 4. Lattice parameters (a and c) of bulk and nano PtFe, PtCo, PtNi, Pt2FeCo, Pt2FeNi, and Pt2CoNi materials. The open circle and solid marks represent the bulk and nano phases, respectively.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Pt2FeCo</th>
<th>Pt2FeNi</th>
<th>Pt2CoNi</th>
<th>Pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, b/Å</td>
<td>2.695</td>
<td>2.706(2)</td>
<td>2.691(2)</td>
<td>3.924(2)</td>
</tr>
<tr>
<td>c/Å</td>
<td>3.736(2)</td>
<td>3.673(2)</td>
<td>3.682(2)</td>
<td>3.924(2)</td>
</tr>
<tr>
<td>Vol/Å3</td>
<td>27.13</td>
<td>26.90(4)</td>
<td>26.67(2)</td>
<td>60.430</td>
</tr>
<tr>
<td>Z</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Rwp</td>
<td>0.0270, 0.0452</td>
<td>0.0573</td>
<td>0.0380</td>
<td>–</td>
</tr>
<tr>
<td>Rp</td>
<td>0.0197, 0.0281</td>
<td>0.0432</td>
<td>0.0299</td>
<td>–</td>
</tr>
<tr>
<td>PtPt/A</td>
<td>2.689, 2.695(2)</td>
<td>2.706(2)</td>
<td>2.691(2)</td>
<td>2.775</td>
</tr>
</tbody>
</table>

Table 1

Refinement results of the lattice parameters for the primitive tetragonal unit cell for Pt2FeCo, Pt2FeNi, and Pt2CoNi nanoparticles annealed at 550 °C. The "a-axis" for the "face-centered" unit cells is 3.810, 3.828, and 3.800 Å respectively. As a reference, the unit cell data of Pt is given. Since the a lattice parameter obtained for Pt2FeCo showed significant deviation from the bulk measurements, we determined the lattice parameters again on a different portion of the sample, obtaining a result that differed by 0.012 Å. The "α" lattice parameter for Pt2FeCo used in this table and Figs. 3 and 4 is the average of two measurements. Both goodness of fit parameters from two measurements are shown.

The synthesis of Pt-M-M' NPs was done using a solution phase co-reduction method. The reaction uses metal chloride precursors and sufficient potassium triethylborohydride reducing agent to account for all the Cl⁻ ions. The NPs prepared at room temperature exhibit a disordered face-centered-cubic structure. The byproduct of the reduction yields metal nanoparticles encased in a KCl matrix. The KCl serves as a stabilizing agent, allowing formation of the ordered intermetallic phase which adopts a tetragonal structure, via heat treatment at 550 °C, without major agglomeration or increase in particle size. The difference in unit cell and site occupancy of Pt, Co, and Ni atoms of disordered and ordered Pt2CoNi are given as an example in Fig. S1. A simulated PXRD patterns of disordered and ordered Pt2CoNi are presented in Fig. S2, which shows the extra diffraction peaks of the ordered phase that arise when transitioning from a disordered face-centered-cubic (fcc) structure to an ordered tetragonal structure on annealing. According to the PXRDs in Fig. 1, all three Pt2M'M" products, after heat treatment at 550 °C, clearly show the diffraction peaks of the ordered tetragonal phase. The broad hump around 23° (2θ) is the diffraction peak of the carbon black support material. The subtle shifts of the peak positions of the XRD patterns arise from different lattice parameters for the different compositions. The atomic size of Fe, Co, and Ni is 156, 152, and 149 pm respectively. [30] Thus, the lattice parameters are expected to increase in the order of Pt2CoNi < Pt2FeNi < Pt2FeCo. As expected, for example, the (101) peak (the peak at roughly 41° 2θ), shifts to higher angles in the order of Pt2FeCo < Pt2FeNi < Pt2CoNi (an XRD peak shift to higher angles is indicative of smaller lattice parameters). Due to the small domain size of the NPs, the diffraction peaks are relatively broad compared to the PXRDs of bulk samples. [31–33].

3. Results and discussion

3.1. Synthesis and crystal structure analysis

The Pt-M-M' NPs were used as a catalyst in ORR experiments. The electrochemical potential cycling from 0.05 to 1.10 V at a rate of 50 mV s⁻¹ to examine their stability in terms of real platinum surface area, ORR activity, and the change in composition of Pt and non-Pt metal in the electrode. CVs and RDEs of all the catalysts were recorded after approximately 25 and 2000 cycles. The elemental composition of all the electrodes after the final CV and RDE experiments were measured with EDX. All the potential cycling experiments were carried out at room temperature and ambient pressure.
Pt₂CoNi/C annealed at 550 °C. The Rietveld refinements of the Pt₂FeCo/C and Pt₂FeNi/C are shown in Fig. S3. The refined lattice parameters and other structural information for the Pt₂FeCo/C, Pt₂FeNi/C, and Pt₂CoNi/C samples are summarized in Table 1, and generally agree with the reported lattice parameters of the corresponding bulk materials. [31–33] The Pt–Pt bond distance is equal to lattice parameter a. The refined lattice parameter “a” of Pt₂FeCo, Pt₂FeNi, and Pt₂CoNi are 2.689(2), 2.706(2) and 2.691(2) Å, respectively, which agrees reasonably well with the reported values (2.710(1), 2.713(1) and 2.697(1) Å) of the bulk materials. [31–33] As expected, Pt₂FeCo has the largest unit cell volume of 27.03(1) Å³. The c lattice parameter and cell volume follow the trend expected from the size of the 3d elements; the lattice parameter a, however, does not follow that trend; it is anomalous. This observation may be due to a lattice contraction caused by the strong magnetic moment of Pt₂FeCo (Curie temperature: PtFe > PtCo > PtNi). [31,33] Fig. 3 shows the cell volume of bulk and nano PtFe, PtCo, PtNi, Pt₂FeNi, Pt₂FeCo, and Pt₂CoNi materials. As expected, there is a linear decrease in lattice parameters and volume as the 3d element changes from Fe > FeCo > FeNi > Co > CoNi > Ni among the respective binaries. Fig. 4 shows the lattice parameters (a and c) of bulk and nano Pt₂FeCo, Pt₂FeNi, and Pt₂CoNi alongside their corresponding binary phases. The overall trend in Pt–Pt bond distances (lattice parameter “a”) of the pseudo-ternary nanoparticle samples obtained in Table 1 agrees well with the trend observed in the bulk phase (Pt₂FeNi > Pt₂FeCo > Pt₂CoNi).

X-rays are diffracted by the electron density of the atoms. [34] Due to the comparable atomic numbers (electron densities), possible ordering of the Fe/Co/Ni on the 2e Wyckoff position cannot be detected by the X-ray diffraction technique applied in this study. (See Fig. S1 for further information).

3.2. Elemental analysis

Pt, Fe, Co, and Ni atomic percentages of all the catalysts were determined via energy-dispersive X-ray spectroscopy (EDX). At least five different individual spots were selected and measured on each sample. The electron beam is roughly 1 μm in diameter and detects roughly 10⁵ - 10⁶ particles (assuming a detection sphere of 1 μm³). Fig. S4 shows the EDX spectra of Pt₂FeCo/C, Pt₂FeNi/C, and Pt₂CoNi/C catalysts before ORR testing. These figures also confirm the purity of the products as there are no other elements detected. The atomic compositions of the samples, before and after stability tests, are given in Table S1. Approximately 10 at% of the 3d metal atoms are lost due to leaching after 2000 CV cycles (between 0.05 and 1.10 V at a scan rate of 50 mV/s in 0.1 M H₂SO₄, in a separate experiment). Any exposed 3d metal atoms on the surface of the particles are expected to oxidize and dissolve within the first 2 sweeps; however, typical alloy NPs with initial Pt:M (M = 3d transition metal) ratios of 50:50 see a reduction of roughly 30 at% of the non-Pt element, stabilizing at the 75—80 atomic at% Pt. [35] Thus, these observations suggest that ordered nanomaterials are chemically and structurally more stable (less prone to leaching) than their alloy counterparts under fuel cell-relevant potential cycling conditions.

The weight % (loading) of the ordered Pt₂FeCo, Pt₂FeNi and Pt₂CoNi NPs on carbon was confirmed by thermogravimetric analysis (TGA). The samples were heated in air from room temperature to 550 °C at 10 °C/min and held at 550 °C to ensure the complete oxidation of carbon. The TGA plots of ordered Pt₂FeCo/C, Pt₂FeNi/C, and Pt₂CoNi/C samples are summarized in Fig. S5. After oxidizing the carbon support material (producing the volatile product CO₂), the percent mass of NPs on carbon was determined to be 26.20%, 25.68%, and 24.04% for Pt₂FeCo/C, Pt₂FeNi/C, and Pt₂CoNi/C, respectively. Correcting for the oxidation of the non-Pt metal (the formation of Fe₂O₃, Co₃O₄, and NiO), the catalyst loadings were determined to be 17.96 wt%, 18.34 wt%, and 17.20 wt% for Pt₂FeCo/C, Pt₂FeNi/C, and Pt₂CoNi/C, respectively. These values compare well with the theoretical loading of 20 wt% as determined by the masses of reactants and carbon black used in the synthesis. This means that >95 wt% of the catalyst is bound to the support and not lost to the supernatant or container walls.
3.3. Particle size analysis

The transmission electron microscopy (TEM) images and the corresponding histograms of Pt$_2$FeCo/C, Pt$_2$FeNi/C, and Pt$_2$CoNi/C annealed at 550 °C are shown in Fig. 5 (Fig. S6 shows them after cycling in 0.1 M H$_2$SO$_4$), and particle sizes are tabulated in Table S2. These images show that the Pt-based intermetallics have spherical shape, and are sufficiently distributed over the carbon support; however, while particle agglomeration is reduced significantly using this method, agglomeration is not completely avoidable. The particle size distribution and the total surface area of the intermetallics can be analyzed using different regions of the particles from these images. The average diameters of each intermetallic particle were 3–5 nm. The distributions of particle size in the histograms were measured by TEM images for more than 100 particles in each sample.

3.4. ORR activity

The electrochemical behavior of Pt$_2$FeCo/C, Pt$_2$FeNi/C, and Pt$_2$CoNi/C electrocatalysts was examined by cyclic voltammetry and rotating disk electrode (RDE) voltammetry. The platinum electrochemical active surface areas (ECSAs) and the changes in chemical composition of Pt and the 3d transition metals are determined before and after the electrochemical experiments. Fig. 6 shows the ORR polarization curves and the summary of mass and specific activity of all the electrode materials and Pt/C ETEK standard after approximately 25 and 2000 cycles in 0.1 M HClO$_4$, and particle sizes are tabulated in Table S2. The platinum electrochemical active surface areas (ECSAs) and the changes in chemical composition of Pt and the 3d transition metals are determined before and after the electrochemical experiments. Table 2 summarizes the changes in ECSA, mass activity, specific activity, and half-wave potential for ORR of each electrode material after 25 and 2000 cycles in 0.1 M HClO$_4$ (Fig. S7 shows the ORR polarization curves and CVs of Pt$_2$FeCo/C, Pt$_2$FeNi/C, Pt$_2$CoNi/C and 50 wt% Pt/C ETEK after 25 and 2000 CV cycles in 0.1 M H$_2$SO$_4$, and Table S3 summarizes activity for ORR in 0.1 M H$_2$SO$_4$). All of the CVs show typical characteristic features of a pure Pt surface.

The trend in mass and specific activity (taken from ORR polarization curves at 0.9 V vs. RHE) after 25 CV scans is Pt$_2$FeNi/C > Pt$_2$FeCo/C > Pt$_2$CoNi/C > Pt/C, though all but Pt/C have very similar activity. The trend after 2000 CV scans is similar. The mass and specific activities are not necessarily the best indicators of ORR activity (as they depend on particle size, active surface area, mass loading on the electrode itself). The half-wave potential, E$_{1/2}$, is more relevant. The E$_{1/2}$ of all 4 samples tested are nearly identical (within 20 mV or so; see Table 2), both after 25 CV scans and 2000 CV scans.

3.5. Electrochemical stability

The ordered pseudo-ternary materials are relatively more stable than their alloy counterparts with regard to non-Pt metal leaching. The change in ECSA after stability testing (2000 cycles from 0.05 to 1.10 V at 50 mV/s), suggests a diminution in active surface area by phenomena such as agglomeration or loss of particles, which is comparable to that of the Pt/C ETEK standard. Pt$_2$FeNi shows a curious increase in ECSA, though it is only a small increase. The changes in the half-wave potential of the ordered pseudo-ternary electrode materials before and after stability tests were comparable to that of Pt/C. All four electrode materials showed a decrease of approximately 30 mV.

4. Conclusions

Ordered tetragonal Pt$_2$FeCo, Pt$_2$FeNi, and Pt$_2$CoNi in the 4–6 nm size range were synthesized using a modified solution-phase co-reduction method, which utilizes the KCl byproduct to kinetically stabilize the NPs from aggregation upon annealing at moderately high temperatures (550 °C). The ordered nanoparticles were transferred onto a carbon support using ethylene glycol and various sonication techniques. The electrode materials were characterized using XRD, EDX, TGA, and TEM to determine the crystal structure, atomic composition, wt% on carbon-black, and particle size. The ORR activity and stability of these nanomaterials were tested in 0.1 M HClO$_4$ and 0.1 M H$_2$SO$_4$ using CV and RDE electrochemical techniques. All showed comparable to slightly improved mass and specific activity for ORR compared to the Pt/C 50 wt% ETEK standard.

Acknowledgments

Minh Nguyen carried out the synthesis and initial characterization of the nanoparticles. That part of the project was supported by the Department of Energy office of Basic Energy Sciences through grant DE-FG02-87ER45298. Minghui Yang carried out the Rietveld analysis of X-ray diffraction data and was supported by Cornell funds. Ryo H. Wakabayashi carried out the electrochemical ORR studies and was supported by the Energy Materials Center at Cornell (EM3), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001086. The EDX and TEM measurements were obtained in facilities managed and maintained by the Cornell.

Table 2

Summary of oxygen reduction reaction (ORR) activity of ordered Pt$_2$FeCo/C, Pt$_2$FeNi/C, Pt$_2$CoNi/C, and Pt/C ETEK 50 wt% standard. Electrochemical measurements were done in 0.1 M HClO$_4$. The cyclic voltammetry (CV) measurements were done at a rate of 20 mV/s from 0.05 to 1.10 V.

<table>
<thead>
<tr>
<th>Electrode material</th>
<th>Pt loading (µg/cm2)</th>
<th>ECSA (m2/gPt)</th>
<th>Mass activity @ 0.9 V 20 mV/s (mA/mgPt)</th>
<th>Specific activity @ 0.9 V 20 mV/s (µA/cm2)</th>
<th>Half-wave potential – E$_{1/2}$ (V vs. Ag/AgCl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After 25 CVs</td>
<td>After 2000 CVs</td>
<td>After 25 CVs</td>
<td>After 2000 CVs</td>
<td>After 25 CVs</td>
</tr>
<tr>
<td>Pt$_2$FeCo/C</td>
<td>20.0</td>
<td>4.51</td>
<td>3.87</td>
<td>66.5</td>
<td>28.6</td>
</tr>
<tr>
<td>Pt$_2$FeNi/C</td>
<td>20.0</td>
<td>4.25</td>
<td>5.12</td>
<td>68.4</td>
<td>28.6</td>
</tr>
<tr>
<td>Pt$_2$CoNi/C</td>
<td>20.0</td>
<td>3.97</td>
<td>3.10</td>
<td>63.4</td>
<td>29.8</td>
</tr>
<tr>
<td>Pt/C ETEK</td>
<td>20.0</td>
<td>7.31</td>
<td>4.96</td>
<td>47.2</td>
<td>22.4</td>
</tr>
</tbody>
</table>
Center for Materials Research (CCMR), an NSF supported MRSEC through Grant DMR-1120296.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jpowsour.2015.01.076.

References